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Fluid flow through cattle hide: an experimental

permeability study
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The permeability of chrome-tanned cattle hide was determined separately with distilled
water and an 89-weight percent aqueous glycerol solution in the light of a simplified
Darcy’s law. The resultant permeability has been found to depend on the location from
which the sample is taken on the original hide. The frequency distribution of the values of
the permeability has been shown to be lognormal, thereby giving rise to a two
parameter-description of the distribution. C© 2002 Kluwer Academic Publishers

1. Introduction
Hide and leather are naturally occurring porous ma-
terials. At a macroscopic level, their pore structure is
essentially isotropic; however, when considered at the
microscopic level, it is anisotropic. Permeability is per-
haps the most significant parameter for describing flow
of fluids through such materials. Hide and leather are
known to exhibit a statistical distribution of properties
for samples obtained from various locations on the hide.
The distribution of the measured values of permeability
is characterized in the current work for chrome-tanned
cattle hide.

A previous work [1] represents the permeability of
leather as a range of values; however, neither the most
probable value nor the frequency distribution of the
permeability is discernable from such a range. Hence,
specifying a range for the permeability has only limited
utility for designing processes involving flow of fluids
through leather [2].

2. Theoretical
Consider fluid flow through a porous column having
the cross-sectional area, A, and the length, L , which
is subjected to the pressure difference, �P = P2 − P1,
or the pressure drop, (−�P) = P1 − P2 (Fig. 1). The
macroscopic momentum and energy balances portray
the flow of fluid through the thickness of the leather.

2.1. Macroscopic momentum balance
The macroscopic equations for conservation of momen-
tum express the pressure gradient, or head, in terms of
the average drag, D, as a function of the microscopic
velocity field, u [3]. For uniform average flow of a ho-
mogeneous and incompressible fluid, the steady-state
macroscopic momentum balance yields [4]
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〈
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〉 �S2 + P1 �S1

− P2 �S2 − �F + m �g (1)

where �Si is the vector whose magnitude is equal to
the cross-sectional area at surface i in the direction of
the fluid flow; �F , the force exerted by the fluid on the
sample; and m, the total mass of the fluid contained
between planes 1 and 2 separated by a distance of L .4

When the cross-sectional area, A, and the porosity,
ε, are constant, the z-component of �Si , which is the
cross-sectional area available to flow, is

�S = εA = �S1 = �S2

Since the flow is considered to be incompressible, we
have

ρ1 = ρ2 = ρ

Thus, the macroscopic mass balance for steady-state
flow becomes

ρS(〈ν1〉 − 〈ν2〉) = 0

or

ν1 = ν2 = ν (2)

Consequently, Equation 1 reduces to

�F = (P1 − P2)S + m �g
= εA[−� �P − ρL �g] (3)

By definition, the force exerted by the fluid on the unit
volume of the sample can be regarded as the average
drag, D; therefore, Equation 3 further reduces to
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Figure 1 Schematic of the experimental setup indicating the flow path
and the quantities required for calculating the permeability indicated.

D =
�F

AL
= −ε� �P

L
− ερ �g

or

D
ρ �gε

= −1

ρ �gL
[� �P + ρ �gL] (4)

Darcy’s law stipulates that the average drag, D, varies
linearly with the specific discharge, q, defined as the
volumetric flow rate per unit overall surface area in-
cluding both the solid and fluid phases. As a result,

q = Q
A

= KD (5)

Note that q is the superficial velocity; it is a scalar quan-
tity for one-dimensional steady flow. Combining Equa-
tions 4 and 5 gives rise to

Q
A

= − K ε

L
[�P + ρgL] (6)

The proportional constant, K, in the above expression
depends only on the structure of the medium and the
properties of the fluid but does not depend on the pres-
sure drop across the sample, (−�P); it is termed the
hydraulic conductivity when the fluid is water at 25◦C.
Moreover, K can be replaced by the scalar, K , for an
isotropic medium. Substituting K with k/µ in Equa-
tion 6 gives rise to Darcy’s law [3, 5, 6]; i.e.,

Q

A
= −

(
k

µ

)(
ε

L

)
[�P + ρgL] (7)

where k is defined as the specific permeability or intrin-
sic conductivity; and µ, the viscosity. Upon rearrange-
ment,

−�P = P1 − P2 = ρgL + QµL

kεA
(8)

The unit of k is cm2, but its typical values are small.
Hence, a unit of permeability, termed the “darcy”, has
been defined as 0.987 × 10−8 cm2. A pressure differ-
ence of 1 atmosphere will produce a flow rate of 1 cubic

centimeter per second through a cube having sides 1 cm
in length and a permeability of 1 darcy when the fluid
has a viscosity of 1 centipoise.

The range of validity of Darcy’s law depends on the
Reynolds number of flow; it must be such that the flow
is totally laminar [7]. The available experimental data
indicate that a Reynolds number of 1.0 appears to be the
upper limit for the applicability of Darcy’s law. Never-
theless, reasonable agreement with experimental data
has been reported for the Reynolds numbers as large as
103. Darcy’s law also demands that steady-state flow
prevails, which can be sustained by applying a constant
pressure to the fluid or by maintaining a constant hydro-
static head in the tank. Naturally, local and/or dynamic
inertia forces are negligibly small for any totally lam-
inar flow under the conditions of macroscopic steady-
state flow.

2.2. Macroscopic energy balance
The general expression of Darcy’s law, Eqution 8,
must be transformed to calculate permeabilities from
the experimental data obtained with the permeame-
ter described in the Experimental section. A general
schematic of the flow path (Fig. 1) illustrates the method
by which the constant pressure, P1, is applied. The pres-
sures measured are those of the air above the fluid in
the tank, P0, and of the fluid after flowing through the
sample, P2. While Equation 8 is based on the pressures,
P1 and P2, the design of the permeameter prevents the
measurement of the pressure, P1. The pressure differ-
ence, �P , i.e., (P2 − P1), however, can be estimated
from the macroscopic mechanical energy balance and
the pressure difference, �Psys , i.e., (P2 − P0), which
is experimentally measurable. For steady-state flow of
an incompressible fluid with a flat velocity profile,
the macroscopic mechanical energy balance simplifies
to [4]

�

[(
1

2
〈ν〉2 + 	̂ + P

ρ

)
w

]
+ Ŵ + Eν = 0 (9)

Since ν1 = ν2 = ν from Equation 2 and no work is per-
formed by the system on its surroundings, the terms,
��(1/2)〈ν̄〉2 and Ŵ , in Equation 9 vanish; as a result,

�	̂ + �P

ρ
+ Êν = 0 (10)

For the segment between planes 0 and 2,

�	̂ = 	̂2 − 	̂0 = gh

and thus, we have from Equation 10

ρgh + (P2 − P0) + ρ Êν02 = 0

or

ρ Êν02 = −ρgh − (P2 − P0) (11)
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For the segment between planes 1 and 2,

�	̂ = 	̂2 − 	̂1 = gL

and thus, we have from Equation 10

ρgL + (P2 − P1) + ρ Êν12 = 0

or

ρ Êν12 = −ρgL + (P1 − P2) (12)

Substituting (P1 − P2) from Equation 8 into the above
equation gives

ρ Êν12 = QµL

kεA
(13)

Since

ρ[ �Eν01 + �Eν12 ] = ρ Êν02,

we obtain

ρ Êν12 = ρ Êν02 − ρ Êν01

Substituting ρ Êν02 from Equation 11 and ρ Êν12 from
Equation 13 into this expression yields

QµL

kεA
= [−ρgh − (P2 − P0)] − ρ �Eν01

which, in turn, leads to

k = QµL

Aε{[−ρgh − (P2 − P0)] − ρ �Eν01}
(14)

Note that �Psys = P2 − P0. Under the conditions of
creeping flow for which Darcy’s Law is valid, the
frictional loss or dissipation, �Eν01 , is negligibly small.
Hence, Equation 14 reduces to

k = QµL

Aε(−ρgh − �Psys)
(15)

Since �Psys is measurable, Equation 15 can be written
more compactly as

κ ′ = − QµL

A(�Ptot )
(16)

where �Ptot is the total pressure drop, i.e.,

�Ptot = (Ptot )2 − (Ptot )0

= (P2 + ρgh) − P0 (17)

Obviously, all the quantities in the right-hand side of
Equation 16 are measurable or can be predetermined.
The superficial permeability, κ ′, in the left-hand side
lumps k and ε as a product because of the appreciable
uncertainty involved in predetermining ε through either
measurement or estimation [8].

3. Experimental
The hides tested in this study were cut from number 2
chrome-tanned cattle hides [9]. The values of perme-
ability were measured with two fluids; the first was dis-
tilled water with a viscosity of 0.8904 cp [10], and the
second was an aqueous solution containing 89 weight
percent of glycerol with a viscosity of 100 cp [11].

The permeability tests were performed with a Soiltest
model K-670 miniature high-pressure permeameter ap-
paratus. Although capable of maintaining a pressure of
100 psi, the standard unit was supplied with gauges hav-
ing a maximum reading of 60 psi. The permeameter was
designed to test cylindrical soil and concrete specimens
approximately 1.3 inches in diameter and 2.8 inches in
length; therefore, adding a gasket to seal the thinner
hide samples, thus preventing the fluid from bypassing
the sample, modified the specimen chamber provided
with the permeameter. This gasket was not replaced for
the duration of the tests to ensure uniform results.

The tank containing the fluid was approximately 4
inches in diameter and 20 inches in length. Applying
pressure to the fluid with compressed air induced flow
of fluid from this tank. A constant relieving-type reg-
ulator controlled the pressure. In practice, the pressure
applied from the compressed air tank is typically much
larger in magnitude than the pressure exerted from the
fluid in the tank or the pressure drop due to frictional
loss. The pressure drop due to frictional losses was
estimated to be a maximum of five orders of magni-
tude smaller than the measured pressure drop, as al-
ready stipulated in the preceding section in connection
with Darcy’s law. The frictional losses were, therefore,
neglected in any calculations. Only the pressure ap-
plied from the compressed air tank and the hydrostatic
head were included in the calculations, as indicated by
Equation 18.

The permeability of chrome-tanned cattle hide and its
variation were evaluated under four different scenarios.

1. Thirteen replicate samples cut from each of four
equal-sized areas on a single hide were mounted such
that their grain sides faced toward the direction of flow
of distilled water at 25◦C.

2. Thirteen samples prepared in the same manner as
described above were mounted such that their grain
sides faced away from the direction of flow of distilled
water at 25◦C.

3. Eight replicate samples cut from a single hide sam-
ple were mounted such that their grain sides faced away
from the direction of flow of distilled water at 25◦C. Var-
ious levels of the pressure exceeding that of the liquid
in the reservoir tank were applied to assess the effect of
applied pressure.

4. Four replicate samples cut from four different hide
samples were mounted such that their grain sides faced
toward the direction of flow of an 89-weight percent
aqueous glycerol solution to study the impact of the
fluid’s viscosity, density, and surface tension.

4. Results and discussion
On a macroscopic scale, chrome-tanned cattle hide is
an isotropic, homogeneous, porous medium. Moreover,

797



T ABL E I Statistics for each group of test conditions

Mean Standard Confidence
permeability deviation interval (95%)

Group (darcies) (darcies) (darcies)

1. Grain up 0.0257 0.0163 0.0356
2. Grain down 0.0182 0.0095 0.0208
3. Pressure dependence 0.0346 0.0027 0.0064
4. Glycerol solution 0.00474 0.00191 0.00607

Figure 2 Arithmetic mean permeabilities and their associated 95% con-
fidence intervals for all hide samples.

the flow rates of the measurement fluid were sufficiently
low to ensure creeping flow in the current work. Thus,
Darcy’s law should be applicable for recovering the
permeability of cattle hide. The resultant permeabili-
ties from each set of test conditions are summarized in
Table I along with the 95 percent confidence intervals
associated with each group of data.

Comparison of the mean values and confidence inter-
vals of the permeabilities evaluated with Darcy’s law
for all groups plotted in Fig. 2 reveals that the mea-
sured values within each group indeed remain invariant
within the 95% confidence intervals, thereby establish-
ing that various flow conditions give rise to essentially
identical permeabilities.

The permeabilities measured as a function of the
applied pressure are displayed in Fig. 3. The error bars
reflect the maximum experimental error of each mea-
surement. Since the error bars for each data point over-
lap, the mean permeability of the entire data set is rep-
resentative. These data illustrate that the permeability
is essentially independent of the applied pressure and
confirm the applicability of Darcy’s law for fluid flow
through cattle hide.

A histogram of permeability encompassing all data
sets is portrayed in Fig. 4. Only the mean permeability

Figure 3 Permeability and the maximum experimental error associated
with each measurement of a single cattle hide sample as a function of
applied pressure.

Figure 4 Histogram of the permeabilities for 31 cowhide samples at
intervals of 5 md.

from the eight pressure dependence tests is included
in the histogram because all the data have been ob-
tained with a single hide sample. In constructing the
histogram, a constant interval reveals the details of
the distribution without excessive spikes and valleys.
Although a gap in permeability exists between 35 and
40 md, choosing a larger interval would result in exces-
sive smoothing of the distribution.

The histogram mentioned above is decidedly skewed
towards lower permeabilities, i.e., to the right; the mean
permeability is clearly not the most probable value. To
address the skewness of this permeability and to better
describe the distribution quantitatively, distribution in-
tervals have been chosen so that they correspond to a
geometric progression of permeability [12, 13]; with
a progression factor of

√
3, the resulting histogram

approximates a normal distribution, as discernible in

798



Figure 5 Histogram of the permeabilities for 31 cowhide samples at
intervals following the geometrical progression with a factor of

√
3.

Figure 6 Experimentally measured permeabilities plotted as a log-
normal frequency of occurrence distribution with a logarithmic scale
for the mean permeability of each interval on the x-axis.

Fig. 5. Nevertheless, skewness to lower permeabilities
still persists. This skewness has been eliminated by plot-
ting the frequency of occurrence as a function of the
logarithm of the mean permeability [13–15], thereby
yielding the lognormal distribution presented in Fig. 6,
which can be expressed as

y = 1

σz

√
2π

exp

[
− (z − z̄)2

2σ 2
z

]
(19)

where z = log(x), in which x is the measured perme-
ability of the cowhide. The arithmetic mean of z, i.e.,
z̄, yields the most probable value of the permeability,
specifically 15.8 md; the corresponding standard devi-
ation is 2.1 md.

5. Conclusions
The permeability of chrome-tanned cattle hide to water
and to an aqueous glycerol solution have been deter-
mined on the basis of a simplified Darcy’s law derived

from macroscopic momentum and mechanical energy
balances. Furthermore, the permeabilities measured
have been found to be essentially independent of the
applied pressure or the fluid viscosity under the condi-
tions of the current study.

Within a confidence interval of 95 percent, the per-
meabilities measured under all test conditions are sta-
tistically equivalent. The values of the permeability of
chrometanned cattle hide are log-normally distributed;
the most probable value and the standard deviation are
15.8 md and 2.1 md, respectively.
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